Pandigital products
Problem 32 We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.
Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.
Answer:
45228 Completed on Sat, 25 Jul 2015, 15:13 python code:from math import sqrtdef func(x): s0=set(str(x)) for i in range(2,min(100,int(sqrt(x)+1))): if x%i==0: s1=set(str(i)) s2=set(str(x//i)) s=s0|s1|s2 if len(s)==9 and '0' not in s: return True return Falseresult=0for i in range(1000,9999): Pstr=str(i) if len(set(Pstr))==4 and '0' not in Pstr: if func(i): result+=i print(i)print(result)
这里由于要求乘积不能反复,能够考虑对乘积候选项循环推断,把满足条件的加起来,而且非常easy反证证明乘积项数字位数仅仅能为4。
数字1-9是一个有趣的问题,很多其它问题能够參考